projective geometry - significado y definición. Qué es projective geometry
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es projective geometry - definición


Projective geometry         
  • The [[Fano plane]] is the projective plane with the fewest points and lines.
  • Growth measure and the polar vortices. Based on the work of Lawrence Edwards
  • The Fundamental Theory of Projective Geometry
TYPE OF GEOMETRY
Algebraic projective geometry; Projective Geometry; Axioms of projective geometry; History of projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts.
projective geometry         
  • The [[Fano plane]] is the projective plane with the fewest points and lines.
  • Growth measure and the polar vortices. Based on the work of Lawrence Edwards
  • The Fundamental Theory of Projective Geometry
TYPE OF GEOMETRY
Algebraic projective geometry; Projective Geometry; Axioms of projective geometry; History of projective geometry
¦ noun the study of the projective properties of geometric figures.
Projective variety         
  • An [[elliptic curve]] is a smooth projective curve of genus one.
ALGEBRAIC VARIETY DEFINED WITHIN A PROJECTIVE SPACE
Projective varieties; Projective algebraic variety; Projective curve; Projective surface; Projective scheme; Projective subscheme; Projective algebraic varieties; Projective embedding; Serre vanishing; Projective completion; Projection from a point; Complex projective varieties; Complex projective variety
In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space \mathbb{P}^n over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb{P}^n.